5.4.3. МАР киназы

Митоген активированные белки или МАР киназы играют важную роль в клеточных ответах, включая пролиферацию, генную экспрессию, ответ на гипертермию, УФ-излучение, повышение осмомолярности и т.д. МАР киназы являются серин/треонин киназами. Классические МАР киназы проходят в ядро где фосфорилируют свои мишени - факторы транскрипции. Альтернативеым путем является фосфорилирование цитоплазматических факторов. У дрожжей имеется четыре МАР киназных пути, которые функционально не зависят и регулируются разными каскадами киназ. Каждый из них регулируется уникальной киназой МАР киназы (МКК или МЕК). Кроме того, существуют и киназы киназы МАР киназы МЕКК. МАР киназы разделены на три подсемейства: 1. Внеклеточные сигнал регулируемые киназы ERK - осуществляют передачу сигнала внутрь клетки. 2. Стресс-активируемые протеин киназы или c-Jun NH2 терминальные киназы SAPK/JNK. 3. р38 киназа - играет критическую роль в воспалительном ответе. МАР киназы активируют работу многих генов, включая клеточный рост и дифференцировку. ERKs фосфорилируют и регулируют активность определенных ферментов, включая фосфолипазу A2 и р90 и ядерных факторов р62FCF и Elk-1, контролирующего несколько генов, включая c-fos. Белки JNKs фосфорилируют аминотерминальный трансактивированный домен c-Jun и ATF2. Они активируются различными стимулами, отличными от ERKs сигналов: тепловой шок, повышение осмомолярности, УФ-излучение. JNKs также могут активироваться агентами, взаимодействующими с рецепторами на клеточной поверхности: ФНОа, интерлейкин-1 или EGF. Более того, существуют доказательства того, что в то время как Ras контролирует активацию ERKs, члены Rho семейства (небольшие GTP- связывающие белки) - Rac1 и Cdc42 регулируют активность JNKs. Свойством Ras/MAPK пути является то, что они активируются под действием различных сигналов, но результат может быть различным. Когда клетки РС12 обрабатывали NGF (фактором роста нервов), то они дифференцировались, становились нейроноподобными и останавливали деление. После обработки EGF они получали сигнал для продолжения пролиферации. В обоих случаях в сигнальную трансдукцию вовлечены ERK MAPK. Различия, которые наблюдались в результате, можно объяснить еще не открытыми сигнальными путями. Однако основным различием является то, что NGF вызывает пролонгированное повышение Ras- GTP, тогда как EGF стимулирует только транзитный эффект. Но все же главная роль принадлежит ERK-MAPK мутации, при которой конститутивно активированные MEK вызывают дифференцировку клеток РС12. В последние годы был достигнут значительный прогресс в исследовании сигнальной трансдукции при развитии, где объектом исследования служили нематоды С.elegans и дрозофила. Для анализа формирования вульвы C.elegans и фоторецепторных клеток глаз дрозофилы была использована комбинация биохимических и генетических методов. Эти системы были изучены так подробно, что считалось, что больше в них нельзя обнаружить ничего нового. Но в 1995 была открыта система KSR-1. Потеря функции Ras или другого компонента вызывает потерю вульвы при формировании гермафродитных червей, тогда как увеличение функции приводит к формированию избыточных вульв (мультивульварный фенотип). Этот Ras путь не единственный, но малейшие его нарушения меняют развитие вульвы. Найден новый белок - супрессор KSR-1, который действует параллельно или ниже. KSR (киназный супрессор Ras) - новая протеин киназа, необходимая для Ras сигнальной трансдукции. У дрозофилы обнаружено два гена, чьи продукты необходимы для активации Ras в сигнал с нормальной эффективностью. Первый кодирует бетта-субъединицу геранил- трансферазы типа I в плазматической мембране. Деффект в этом гене блокирует Ras-изопренизацию. Второй ген кодирует протеинкиназу, которую назвали киназный супрессор Ras (KSR). Она функционирует во многих рецепторных тирозин киназных путях. KSR был обнаружен и у млекопитающих. Основные пути сигнальной трансдукции у разных организмов представлены в табл. 8
C.elegans Drosophila Млекопитающие
лиганд--> рецептор лиганда Lin15 Lin3--> let23??? boss--> sevenless EGF--> EGFR
адаптор--> ???? фактор let23-->? DRK-->SOS GRb-2-->SOS
GAP let60--> Ras1--> Ras-->
MAPKK--> MAPK lin-45--> Sur1 Mpn1 D-Raf--> Rolled Raf--> Erk
На их регуляцию могут влиять непосредственно вирусные онкогены, такие как v-rel. Его продукт идентифицирован как высоко онкогенный белок, вызывающий ретикулоэндотелиоз у индюков.р50 и c-rel имеют 60% гомологии. NF-kB - один из плейотропных факторов транскрипции - генеральный вторичный мессенджер. Его активируют многие стимулы. Как же действует v-rel? По одной из гипотез v-rel формирует димер с клеточным аналогом c-rel. Этот димер неактивен, что предотвращает NF-kB или другие ФТ от функционирования. V-rel - исключительно ядерный белок, так как он потерял участок, необходимый для его транспорта в цитоплазму. AP1 отвечает на промоторы ТРА. АР1-связывающий сайт индуцируется ТРА в гене-мишени. Канонический AP1 - димер c-Jun и c-Fos. Мутации в них понижают ДНК связывающую активность и понижают онкогенный потенциал.

5.5. Оксидативный стресс

Генерация кислородных радикалов (ROS) изучена слабо за исключением некоторых специализированных клеток. В фагоцитах под действием различных факторов активируется НАДФН-оксидазный комплекс, состоящий из четырех белков. Этот комплекс ответственен за перенос электронов с НАДФН на O2 c последующей генерацией супероксиданиона О2-, который спонтанно или ферментативно дисмутирует в Н2О2. В нейтрофилах активность НАДФН- оксидазного комплекса регулируется G-белком (GTP связывающим белком) Rac2, а в макрофагах - Rac1. Таким образом, Rac белки регулируют уровень активных форм кислорода (ROS) в клетке. Генерация ROS играет существенную роль в стимуляции факторов роста и цитокинов. Перекись водорода может участвовать в сигнальной трансдукции. Она активирует МАРК и c-Jun- стресс-активируемую протеин киназу (JNK/SAPK), а МАРК регулируется Ras белками. Rac1 регулирует JNK/SAPK. Принято считать, что эффекты ROS осуществляются посредством ковалентной модификации сульфгидрильных остатков критических белков. Если это так, то спектр их регуляторной деятельности широк: от активации тирозиновых фосфатаз до ФТ. Существует два пути действия ROS: 1. Модификация функции белка через фосфорилирование тирозиновых остатков 2. Модификация функции белка окислительно-восстановительными реакциями цистеиновых остатков

5.6. Теломераза

Теломераза представляет собой рибонуклеопротеин, который синтезирует GC-богатые теломерные повторы (TTAGGC) на концах хромосом. Она компенсирует постепенное укорочение 5'концов линейной молекулы ДНК при репликации. Укорочение происходит из-за того, что РНК-затравку на 5' конце невозможно заменить на ДНК, так как ДНКполимераза обладает лишь 5'>3' полимеразной активностью. Таким образом, теломераза вносит вклад в стабильность хромосом. Было предположено, что укорочение теломер может лежать в основе работы митотических часов, которые регулируют лимит нормальных клеточных делений и старение. Реактивация теломеразы может быть критической для пролиферации опухоли, позволяющая клеткам избежать старения. Современная модель клеточного старения предполагает, что теломеры соматических клеток укорачиваются до тех пор, пока они достигнут стадии М1, в которой длина теломеры препятствует дальнейшему клеточному делению, а теломераза больше не активна. Митотическое старение во многих клетках опосредована р53 и Rb генами. Когда пройден М1 барьер, дальнейшая пролиферация приводит к укорочению хромосом, что в конце концов приводит к хромосомной нестабильности, р53-зависимой остановке клеточного цикла и клеточной смерти (М2).

Назад

Далее

Сайт управляется системой uCoz